ฟิสิกส์รอบตัว ตอน ฉนวนกันเสียง

  • Category
    ฟิสิกส์
  • Name
    ฟิสิกส์รอบตัว ตอน ฉนวนกันเสียง
  • Description
    เมื่อคลื่นเสียงวิ่งกระทบวัสดุ จะมีบางส่วนของพลังงานเสียงถูกดูดซับและที่เหลือจะสะท้อนออกไป และเสียงที่สะท้อนออกไปนั้นจะมีพลังงานน้อยกว่าแหล่งกำเนิดเสียงเสมอ และพลังงานเสียงที่ถูกดูดซับเข้าไปจะถูกแปรเปลี่ยนไปเป็นพลังงานรูปอื่น โดยทั่วไปจะเป็นความร้อน และจำนวนพลังงานที่ถูกดูดซับเข้าไปจะถูกแสดงในรูปของสัมประสิทธิ์การดูดซับเสียง (Sound Absorption Coefficient)
  • Created
    วันพฤหัสบดี, 23 เมษายน 2558
  • Group admin
    Physic05
 
ห้องเรียน
คณิตศาสตร์ ฟิสิกส์ เคมี ชีววิทยา
ค้นหา
  • loader
คลับ (Club) ล่าสุด
  • การค้นพบกฎและทฤษฎีทางฟิสิกส์ (Discovery Law and Theory of Physics)
    ฟิสิกส์เป็นการศึกษาปรากฎการณ์ทางธรรมชาติ โดยพยายามอธิบายปรากฎการณ์ต่างๆ โดยใช้กฎและทฤษฎีที่นักฟิสิกส์สร้างขึ้น กฎและทฤษฎีต่างๆ จะถูกพิสูจน์ด้วยการทดลอง การเข้าใจแนวคิดและที่มาของกฎและทฤษฎีเหล่านั้น จะทำให้เราเข้าใจธรรมชาติมากขึ้น และทำให้เราเข้าใจวิธีคิดของนักฟิสิกส์ด้วย...
  • ความหลากหลายทางชีวภาพ
    สิ่งมีชีวิตมีมากหมายหลายชนิดเเตกต่างกัน ดังนั้นการจัดลำดับสิ่งมีชีวิตในโลกของเราใช้หลักเกณฑ์ใดบ้างมาเรียนรู้กัน
  • What Companies Bangalore Packers Movers Provide
    There are lots of going businesses or maybe removal businesses or perhaps packers as well as movers inside Bangalore, Maharashtra. This sort of firms are encouraging people significantly inside relocation. These are helping those who wish to shift their particular residences as well as offices...
  • ห้องเรียนคณิตศาสตร์ของครูศุภกร
    ห้องเรียนคณิตศาสตร์ของครูศุภกร สอนดี Mathematics rules
  • คลับคนรักคณิต
    คลับคนรักคณิต เนื้อหาและบทเรียน CAI วิชาคณิตศาสตร์ สำหรับผู้ที่นิยมศึกษาผ่านช่องทางอินเตอร์เน็ต พูดคุย และแลกเปลี่ยนกันทุกเรื่องราวที่เกี่ยวกับการคำนวณ เชิญรับชมบทเรียน e-Learning ของคลับนี้ได้ครับ
  • smith mekpiboonwattana
    เรขาคณิตเป็นวิชาด้วยการวัดดิน การคำนวณด้วยเส้น
คนที่ออนไลน์

มี 503 ผู้มาเยือน และ ไม่มีสมาชิกออนไลน์ ออนไลน์

วันพฤหัสบดี, 23 เมษายน 2558 15:46 by Physic05

ฉนวนกันเสียง (Sound Insulation)

อาศัยหลักในการกั้นเสียงให้ผ่านจากด้านหนึ่งไปยังอีกด้านหนึ่งให้น้อยที่สุด หรือไม่ให้เสียงผ่านเลย ฉนวนกันเสียง เป็นวัสดุที่มีลักษณะเป็นรูพรุน  หรือ  Open Cell  จึงช่วยในการดูดซับเสียงได้อย่างมาก  คือ  ขณะที่เสียงวิ่งตกกระทบฉนวน  พลังงานเสียงเหล่านั้นจะถูกเปลี่ยนเป็นพลังงานความร้อน  ซึ่งเกิดจากการเสียดสีของพลังงานเสียงกับรูพรุนของฉนวน

ฉนวน จะช่วยลดระดับพลังงานของเสียงในผนัง  Double Wall  โดนอาศัยหลักการเดียวกับการดูดซับเสียงข้างต้น  ยิ่งถ้าเพิ่มความหนาของฉนวนมากเท่าไร  ก็ยิ่งช่วยเพิ่มค่า  STC ของระบบมากขึ้น

หลักการป้องกันเสียง

เป็นการลดพลังงานของเสียงที่ผ่านห้องหนึ่ง  ไปยังอีกห้องหนึ่ง  สามารถออกแบบผนังเพื่อกั้นการส่งผ่านของเสียงที่มีอากาศเป็นสื่อนำ  (Airborne Sound)

Sound Transmission Loss (STL)

ความสามารถของวัสดุหรือระบบที่กั้นหรือลดการส่งผ่านของเสียงจากพื้นที่หนึ่งไปยังอีกพื้นที่หนึ่ง จะถูกวัดโดยTransmission Loss (TL) ค่า TL ที่สูงกว่านั้นหมายความว่าสามารถลดเสียงได้มากกว่า และค่า TL จะถูกวัดที่หลายความถี่และถูกรายงานเป็น decibels (dB)

STC  เป็นตัวเลขค่าเดียวที่แสดงสมรรถนะของการยอมให้เสียงจากอากาศผ่านไปได้มากน้อยแค่ไหนบนระบบกำแพง  พื้น  หรือฝ้าเพดาน  โดยหาจาก TL  ที่ความถี่ต่างๆ  ในช่วง  125 - 4,000 Hz  ซึ่ง  STC  เป็นค่าเฉลี่ยของ TL ซึ่งสามารถบอกได้ว่าผนังใดๆ  ที่มีค่า STC สูงก็สามารถกันเสียงได้ดีหรือมีความ  Sound Insulation สูงด้วย

-       เป็นค่าที่บ่งบอกถึงการลดเสียงจากฟากหนึ่งไปยังอีกฟากหนึ่งของระบบผนังหรือหลังคา  มีหน่วยเป็นเดซิเบล  (dB)

-       ค่า STC ยิ่งมาก  แสดงว่าระบบนั้นๆ  สามารถกั้นเสียงได้ดียิ่งขึ้น

 

การดูดซับเสียงหรือการควบคุมเสียงสะท้อน (Sound Absorption)

การออกแบบห้องที่ต้องการลดเสียงสะท้อน เช่น ห้องประชุม, โรงละคร, โรงภาพยนตร์, ห้องบรรยาย, ห้องดูหนัง – ฟังเพลง, ห้องคาราโอเกะ หากมีเสียงสะท้อน หรือเสียงก้องเกิดขึ้น จะทำให้ประสิทธิภาพของเสียงที่หูของผู้ฟังได้ยินอาจลดประสิทธิภาพลงไป ดังนั้นต้องออกแบบให้มีวัสดุที่สามารถดูดซับเสียงได้ดี เพื่อป้องกันเสียงที่มากระทบฝ้าเพดาน พื้น ผนัง โดยสามารถดูได้จากค่า NRC ซึ่งเป็นค่าที่ระบุความสามารถการดูดซับเสียงของวัสดุต่าง ๆ



วัสดุทุกชนิดสามารถดูดซับเสียงได้ในระดับที่แตกต่างกันไป เมื่อคลื่นเสียงวิ่งกระทบวัสดุ จะมีบางส่วนของพลังงานเสียงถูกดูดซับและที่เหลือจะสะท้อนออกไป และเสียงที่สะท้อนออกไปนั้นจะมีพลังงานน้อยกว่าแหล่งกำเนิดเสียงเสมอ และพลังงานเสียงที่ถูกดูดซับเข้าไปจะถูกแปรเปลี่ยนไปเป็นพลังงานรูปอื่น โดยทั่วไปจะเป็นความร้อน และจำนวนพลังงานที่ถูกดูดซับเข้าไปจะถูกแสดงในรูปของสัมประสิทธิ์การดูดซับเสียง (Sound Absorption Coefficient) คือค่าที่แสดงความสามารถในการดูดซับเสียงของวัสดุ ถ้าหากใช้วัสดุที่ดูดซับเสียงไม่ดีจะทำให้เกิดเสียงก้องภายในห้องนั้น ๆ ได้ สามารถพิจารณาค่าต่าง ๆ ได้เป็น 2 ลักษณะ คือ

1. Sound Absorption Coefficient (SAC)


SAC หมายถึงสัดส่วนของพลังงานเสียงที่ถูกดูดซับไปเมื่อชนกระทบ เทียบกับพลังเสียงจากแหล่งกำเนิด ยกตัวอย่าง เช่น มีวัสดุหนึ่งมีค่า SAC 0.85 นั่นก็หมายความว่าพลังเสียง 85% ได้ถูกดูดซับไว้เมื่อเคลื่อนที่ไปชนกับวัสดุนี้ และ 15% ของพลังงานที่เทียบกับแหล่งกำเนิดจะสะท้อนออกมา ค่าการดูดซับเสียงของทุกวัสดุจะแปรผันกับความถี่ของเสียงที่เข้าไปกระทบ ดังนั้นค่าการดูดซับเสียง (SAC) จะถูกวัดที่หลายความถี่คือ 125, 250, 500, 1,000, 2,000 และ 4,000Hz ความถี่เหล่านี้เป็นความถี่ตรงกลางของเสียงที่วิ่งกระทบน้อยมากที่จะมีการใช้ค่า SAC ของเสียงที่ช่วงความถี่เดียวในการออกแบบทางสถาปัตยกรรม หรือระบุว่าวัสดุใด ๆ มีค่า SAC เป็นเท่าไร ในการออกแบบสถาปัตยกรรมค่า SAC จะเป็นค่าดูดซับเสียงที่ความถี่ที่เจาะจงเท่านั้น

2. Noise Reduction Coefficient (NRC)


NRC เป็นตัวเลขที่จะระบุได้ถึงความสามารถในการดูดซับเสียงของวัสดุ โดยที่ NRC คือค่าเฉลี่ยของ SAC ที่ถูกวัดที่ 250, 500, 1,000, 2,000 Hz และปัดเศษให้อยู่ที่ 0.05  โดยทั่วไปค่า NRC จะต้องมีค่ามากกว่า 0.40 ถึงจะถือว่าเป็นวัสดุดูดซับเสียง (Acoustic) วัสดุที่มีรูพรุน ฉนวนจะยอมให้คลื่นเสียงทะลุผ่านไปได้ลึกมาก ซึ่งจะเป็นที่ที่พลังงานเสียงจะเปลี่ยนเป็นความร้อนเนื่องจาก ความเสียดทานระหว่างช่องอากาศกับเส้นใยวัสดุประเภทนี้สามารถมีค่า NRC ได้มากถึง 0.95 – 1.00 ขึ้นอยู่กับความหนาของฉนวน

อย่างไรก็ตามหูของมนุษย์ไม่สามารถรับทราบ ได้ถึงความแตกต่าง ระหว่างวัสดุดูดซับเสียงที่มีค่าต่างกันเพียง 0.05 ยกตัวอย่างเช่น คนเราจะรู้สึกไม่แตกต่างกันระหว่างการใช้วัสดุที่มีค่า NRC 0.80 กับ 0.85  ส่วนใหญ่สถาปนิกหรือผู้ออกแบบจะเลือกวัสดุโดยดูที่ค่า NRC เป็นหลัก ส่วนวัสดุ Acoustician จะดูที่ค่า SAC เป็นหลัก

อัตราที่เสียงถูกดูดซับในห้อง เช่น ห้องประชุม หรือมีโรงภาพยนตร์หรือโรงละครเป็นสิ่งสำคัญที่จะทำให้มีเสียงหนวกหู (Noise) หรือเสียงที่ไม่พึงปรารถนาลดน้อยลง ทั้งจะสามารถควบคุมการสะท้อนกลับไปกลับมา (Reverberation) ของเสียงได้ดีด้วย วัสดุที่ผลิตขึ้นเพื่อประโยชน์ในการนี้เรียกว่าวัสดุอะคูสติกส์ (Acoustical Materials) ซึ่งอาจจะเป็นจำพวกไม้อัด หรือวัสดุอย่างอื่นก็ได้ โดยเฉพาะที่มีผิวนิ่มหรือรูพรุน ถ้าใช้วัสดุเหล่านี้และวางในตำแหน่งที่ถูกต้องแล้วทุกๆ คนในโรงภาพยนตร์หรือโรงละครย่อมจะได้ยินเสียงชัดเจนและไพเราะทั่วถึงกันหมด ไม่ว่าจะนั่งอยู่ที่จุดใดของห้องก็ตาม ตัวอย่างเช่น มุมของที่อาจจะเป็นมุมอับของเสียง สถาปนิกอาจติดตั้งวัสดุบุผนังหรือเพดานที่มีการสะท้อนเสียงจากมุมอื่นมาช่วยเสริมเสียงตรงมุมอับก็ได้ หรือในส่วนที่มีเสียงสะท้อนมากๆ จนฟังไม่รู้เรื่อง อาจแก้ไขโดยการบุวัสดุดูดซับเสียงหรือวัสดุอะคูสติกส์ ในบริเวณนั้นๆ เพราะฉะนั้นการออกแบบห้องและการบุวัสดุในแต่ละส่วนของห้องไม่จำเป็นจะต้องบุวัสดุกันเสียงทั่วทั้งห้อง อย่างไรก็ตามการตกแต่งห้องให้สวยงาม ฟังเสียงได้ชัดเจนย่อมต้องคำนึงถึงวัสดุที่นำมาใช้ว่าปลอดภัย คงทน และทนไฟหรือไม่ มิฉะนั้นก็ก่อให้เกิดปัญหาอย่างอื่นตามมากับวัสดุที่ใช้ เช่น ไฟไหม้ มอดปลวกกิน หรือดูดน้ำดูดความชื้น ทำให้ขึ้นรา ฯลฯ

ตามปกติเสียงถูกดูดซับโดยถูกกระทำให้กลายเป็นพลังงานอย่างอื่น แล้วสุดท้ายกลายเป็นพลังงานความร้อน แต่พลังงานความร้อนเกิดขึ้นน้อยมากจนแทบจะไม่กระทบกระเทือนกับประสิทธิภาพของการดูดซับเสียงของวัสดุดูดซับเสียง เช่น วัสดุที่มีรูพรุนแต่อย่างไร ตัวอย่างเช่นอาจารย์ปาฐกถาอยู่ 1 ชั่วโมง พลังงานเสียงที่แปลงออกเป็นพลังงานความร้อนทั้งชั่วโมง สามารถนำไปต้มน้ำชาถ้วยเล็กๆ ได้เพียงถ้วยเดียว

วัสดุต่างๆ ที่ดูดซับเสียงถ้ามีความหนาที่ถูกต้องก็อาจดูดซับเสียงได้ถึง 95 % หรือเรียกว่ามีค่าสัมประสิทธิของการดูดเสียง (Absorption Coefficient) 0.95 ถ้าความสามารถในการดูดซับเสียง 100 % มีค่าสัมประสิทธิ เท่ากับ 1   ถ้า 70 % มีค่าเท่ากับ 0.7   วัสดุที่จะเป็นวัสดุกันเสียงจะต้องมีค่าสัมประสิทธิมากกว่า 0.3 หรือ 30 % ขึ้นไป ถ้าน้อยกว่านั้นไม่สามารถนำมาเป็นวัสดุกันเสียงได้  สัมประสิทธิของการดูดซับเสียงนั้น สัญลักษณ์กรีกเรียกแอลฟา a คือความสามารถในการดูดซับเสียงของวัสดุนั้นๆ ในความถี่ที่กำหนดให้ เช่น คลื่นเสียงกระทบวัสดุประเภทหนึ่ง เกิดการสะท้อนกลับ 45 % และถูกดูดซับเข้าไปในวัสดุนั้นถึง 55 % ค่าสัมประสิทธิของการดูดซับเข้าไปในวัสดุนั้นถึง 55 % ค่าสัมประสิทธิของการดูดซับเสียงจะเท่ากับ 0.55 (ไม่มีหน่วยวัด)   ถ้าเราตะโกนในอากาศ อากาศดูดซับเสียงไป 1   หมายความว่าอากาศดูดเสียงเราไป  100 % เพราะไม่มีเสียงสะท้อนกลับ แต่ถ้าเราตะโกนใส่ผนังที่บุด้วยกระดาษชานอ้อย เมื่อวัดการดูดซับเสียงเป็นสัมประสิทธิ เท่ากับ 0.7 หมายความว่าผนังกระดาษชานอ้อยดูดซับเสียงเราไป 70 %

 

อีกประการหนึ่งเป็นเรื่องของความถี่ ถ้าความถี่สูงวัสดุจะดูดซับเสียงได้มากกว่าความถี่ต่ำ โดยเฉพาะวัสดุประเภทที่มีรูพรุน (Porous material) แต่ในทางกลับกันถ้าเป็นผนังจำพวกไม้อัดหรือผนังกั้นห้อง (Panel vibration) การดูดซับเสียงจะน้อยสำหรับความถี่สูง แต่จะดูดซับเสียงที่มีความถี่ต่ำได้มากกว่า การดูดซับเสียงของวัสดุสองประเภทนี้ นำไปใช้ประโยชน์ในการออกแบบห้องได้

เมื่อคลื่นเสียงไปกระทบกับพื้นผิวจะเกิดปรากฏการณ์คือ ส่วนหนึ่งจะสะท้อนออก (Reflect) ส่วนหนึ่งจะแทรกผ่านผนังไปยังอากาศที่อยู่นอกผนัง (Transmit) อีกส่วนหนึ่งจะถูกดูดซับเข้าไปในผนัง (Absorb) ถ้าเสียงทั้งหมดจากต้นกำเนิดเสียง มีความเข้มเสียง Ι = 1 จะได้

r + α + t = 1

เมื่อ      r    =          เสียงสะท้อน (reflected)

α    =          เสียงที่ถูกดูดซับเข้าไปในผนัง (Absorb)

t    =          เสียงที่แทรกผ่านเข้าไปยังอากาศที่อยู่นอกผนัง (Transmitted)

พลังงานที่ถูกดูดซับสามารถอธิบายได้ในรูปของสัมประสิทธิ์ของการดูดซับเสียง (Sound Absorption Coefficient, α) ที่ได้จากห้องทดลองหรือวัสดุที่เป็นพื้นผิวของห้อง ค่าดูดซับเสียงเป็นค่าที่บอกถึงคุณภาพของวัสดุที่มีช่วง จาก 0 ถึง 1 ถ้าผนังไม่ดูดซับเสียงซึ่งหาได้ยากในธรรมชาติ ค่าสัมประสิทธิ์การดูดซับเสียงจะเท่ากับ 0 ถ้าผนังดูดซับเสียงไปทั้งหมด เช่น ช่องเปิด จะเท่ากับ 1

การควบคุมเสียง

การควบคุมเสียงสำหรับอาคาร เป็นสิ่งจำเป็นสำหรับการออกแบบเพื่อให้เกิดความเหมาะสมในการใช้งาน ของแต่ละพื้นที่ใช้สอยในอาคาร โดยเสียงที่มีผลกระทบต่ออาคารจะแบ่งออกเป็น 2 ชนิด คือเสียงจากภายนอกอาคาร (External Noises) และเสียงจากภายในอาคาร (Internal Noises)การป้องกันเสียงจากภายนอก สามารถที่จะป้องกันเสียงได้ด้วยวิธีต่างๆ ดังนี้

1) ควบคุมด้วยระยะทาง ทุกระยะห่างจากต้นกำเนิดเสียง ความดังของเสียงจะลดลง อาทิ หากที่ดินของบ้านอยู่ติดถนนหรือบริเวณที่มีเสียงรบกวน อาจจะต้องวางตำแหน่งอาคารให้ไกลออกจากถนนให้มากเท่าที่จะทำได้ 
2)หลีกเลี่ยงบริเวณที่เสียงกระทบโดยตรง อาทิ การทำแผงหรือผนังกันเสียง ซึ่งอาจเป็นผนัง แนวรั้ว แนวต้นไม้ ที่จะช่วยกั้นเสียงและลดความเข้มของ   เสียงโดยตรงก่อนที่จะที่จะถึงอาคาร 
3) การวางผังอาคาร โดยให้พื้นที่ใช้สอยส่วนที่ไม่ต้องการความเงียบมากเป็นตัวป้องกันเสียง หรือกำหนดตำแหน่งช่องเปิดของอาคารหลีกเลี่ยงแนวทางของเสียง
4) การเลือกใช้วัสดุกันเสียงให้กับกรอบอาคาร
อาทิ การบุฉนวนใยแก้วให้กับผนังกรอบอาคาร การเลือกใช้กระจกสองชั้น หรือการใส่ฉนวนกันเสียงให้กับส่วนหลังคาอาคาร

ส่วนการป้องกันเสียงจากภายในอาคาร จะแบ่งเสียงภายในออกเป็น 2 ประเภท คือ เสียงโดยตรง (Direct Noise) และเสียงสะท้อน (Reverberant Noise) สามารถที่จะป้องกันเสียงได้ด้วยวิธีต่างๆ ดังนี้

1)ลดเสียงจากแหล่งกำเนิด เสียงโดยตรง สามารถลดได้ด้วยการใช้แผงกั้นระหว่างต้นกำเนิดเสียงกับผู้ฟังเก็บต้นกำเนิดเสียงไว้ในกล่อง /ห้องที่ปิดมิดชิดที่ทำด้วยวัสดุป้องกันเสียง / ห้องที่มีผนังหนาทึบ หรือทำพื้นสองชั้นที่มีความยืดหยุ่นรองรับเครื่องกล เพื่อช่วยลด Structure-borne Sound  ส่วนเสียงสะท้อนสามารถลดโดยการใช้วัสดุดูดซึมเสียงที่ผนัง โดยเฉพาะด้านที่ทำให้เกิดเสียงสะท้อนมาก 
2) ลดเสียงที่มาตกกระทบ โดยการวัสดุดูดซับเสียง และวัสดุป้องกันเสียง อาทิ การใช้แผ่นฉนวนเยื้อกระดาษบุเสริมตรงผนังด้านที่เป็นทางต้นกำเนิดเสียง หรือบุแผ่นชานอ้อยเพื่อดูดซับเสียงในโรงแสดงมหรสพ 
3) การวางผังอาคาร โดยการแยกบริเวณที่มีเสียงดัง ออกจากบริเวณที่ต้องการความเงียบ หรืออาจจะกั้นพื้นที่สองส่วนนี้ด้วยห้องอื่น

วัสดุดูดซับเสียง ที่ใช้กันอยู่ทั่วไปมีหลายลักษณะ พอแบ่งออกได้เป็น 4 ลักษณะ คือ
1) วัสดุดูดซับเสียงที่โปร่งเบาเป็นฝอยเป็นรูพรุน เช่น ฉนวนเยื่อกรระดาษเซลลูโลส ฉนวนใยหิน ฉนวนใยแก้วฉนวนโฟมโพลียูรีเทนประเภทต่างๆคุณสมบัติก็แตกต่างกันไป ตามความแข็งแรง ความหนาแน่น และการใช้งาน เหมาะสำหรับเสียงที่มีความถี่สูง 
2) วัสดุดูดซับเสียงที่มีผิวปรุเป็นรู แผ่นดูดซับเสียงยิบซับบอร์ดที่มีรู แผ่นชานอ้อย แผ่นไม้กอร์ก สำหรับเพิ่มพื้นที่ผิวในการรับเสียง 
3) วัสดุดูดซับเสียงที่เป็นเยื่อแผ่น ผนังที่มีหลายชั้นกระจกสองชั้น หรือการติดผ้าม่านให้กับผนัง/ช่องเปิดสำหรับเสียงที่มีความถี่ต่ำ
4) วัสดุดูดซับเสียงที่พื้นผิวมาก ที่ช่วยลดเสียงสะท้อน  ผนังที่มีการออกแบบ เป็นช่องๆ รูปแบบต่างๆ ซึ่งลักษณะการใช้งานก็แตกต่างกันไปตามการใช้งาน อาจมีหลายลักษณะประกอบกันไปเพื่อประสิทธิภาพการควบคุมเสียงที่เหมาะสม  หรือจะใช้วัสดุที่มีพื้นผิวมากประกอบกับวัสดุที่เป็นรูพรุน

วัสดุดูดซับเสียงลักษณะต่างๆในการเลือกใช้วัสดุเหล่านี้ ให้เหมาะสมกับการใช้งาน นอกจากจะต้องคำนึงถึงการดูดซับเสียงสะท้อน ป้องกันเสียงไม่ให้ทะลุผ่าน ยังคงต้องควบคุมให้เสียงกระจายไปในทิศทางที่เหมาะสมกับการใช้งานอีกด้วย

การควบคุมเสียงในอาคาร (Noise Control) จะต้องคำนึงถึงประเภทของอาคาร ประเภทของห้องหรือพื้นที่ใช้สอยในแต่ละส่วนตามการใช้งาน เพื่อให้ทราบถึงความต้องการระดับความดังของเสียงที่เหมาะสม ดังที่กล่าวมา ดังนั้น พื้นที่ใช้สอยที่ต้องคำนึงถึงการออกแบบระบบเสียงเป็นเรื่องสำคัญ อาทิการออกแบบภายในโรงภาพยนตร์ โรงละคร หรือห้องฟังดนตรี  ที่ตำแหน่งของผู้ฟังในทุกจุดภายในห้อง

link วิทยาศาสตร์

รวม link ที่น่าสนใจทั้งในและต่างประเทศ เพื่อค้นคว้าหาข้อมูลที่ต้องการทางด้านวิทยาศาสตร์

ดูลิงค์ทั้งหมด

link คณิตศาสตร์

รวม link ที่น่าสนใจทั้งในและต่างประเทศ เพื่อค้นคว้าหาข้อมูลที่ต้องการทางด้านคณิตศาสตร์

ดูลิงค์ทั้งหมด
UNESCO Bangkok

ICT in Education newsletter

SEAMEO Congress

Programme with Presentations

Black Ribbon